

Advanced Power Electronics Interface in Micro-grid Systems

Bernard G. Treanton, California Energy Commission

Research Assessment

- Subject Area: Micro-grid and Power Electronics (PE)
 technologies used in Distributed Energy Resources (PIER DER)
 applications
- Objective: Identify and evaluate research programs in order to provide guidance to PIER Integration Research Program and U.S. Department of Energy.
- Focus: Application of **Inverters, un-interrupted power supplies** and energy storage used in distributed generation and micro-grid systems.

Note: This study was conducted by Navigant Consulting (December 2004 to August 2005)

DER Power Electronic Interface

Distributed Energy Resources

Fuel Cell

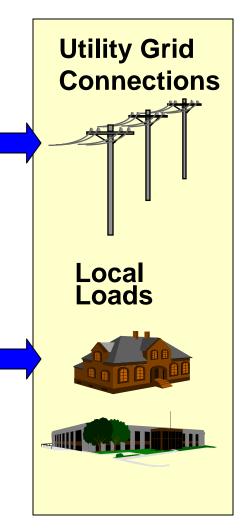
PV

Micro-turbine

Wind

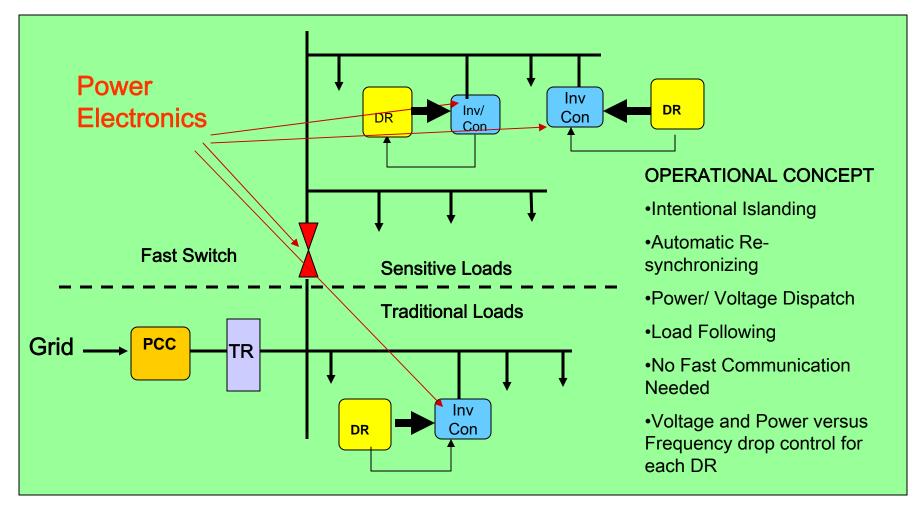
Energy Storage

Generators


Advanced Power Electronics Interfaces Modules

Modules Functions

- Power Conversion, Inverter
- Power Conditioning (PQ)
- Protection, Output Interface
- DER and Load Control
- Ancillary Services
- Monitoring and Control



Source: NREL

CERTS Micro-Grid

Source: U of Wisconsin

CEC, 21/03/2006

PE Basics Specifications

□PE refers to **devices** (e.g., **I**nsulated **G**ate **B**ipolar **T**ransistor and **S**ilicone **C**ontrolled **R**ectifier), and associated peripheral **modules**

□Convert electrical	energy	from	one	form	to a	more	usable
form.							

☐ Semiconductor-based switch, continuously being improved in term power density and reliability are known as:

Switch Device	Function
Frequency Converter	AC to AC
Inverter	DC to AC
Chopper	DC to DC
Rectifier	AC to DC

PE Problem Statement

- □ Cost can account for up to 45% of the costs of a DER system
- □ Reliability Improvement will permit long term commercial penetration of DER using power electronics
- ☐ Functionality Improvement will expand the use of distributed energy

Cost of Power Electronics for DER

Reducing cost of PE will greatly reduce the overall total cost of DER. Power electronics are part of key DER technologies, and represent a significant portion of the capital cost.

DER Type	DER Capital cost	PE% of Total Cost
Micro-turbine	\$900- \$1,800	35 to 45 %
Wind Turbine	\$1,000 -\$4,000	25 to 40 %
•Fuel Cell	\$3,000- \$6,000	10 to 30 %
•PV	\$6,000-\$10,000	10 to 25%

PE Reliability and Functionality Needs

□ RELIABILITY

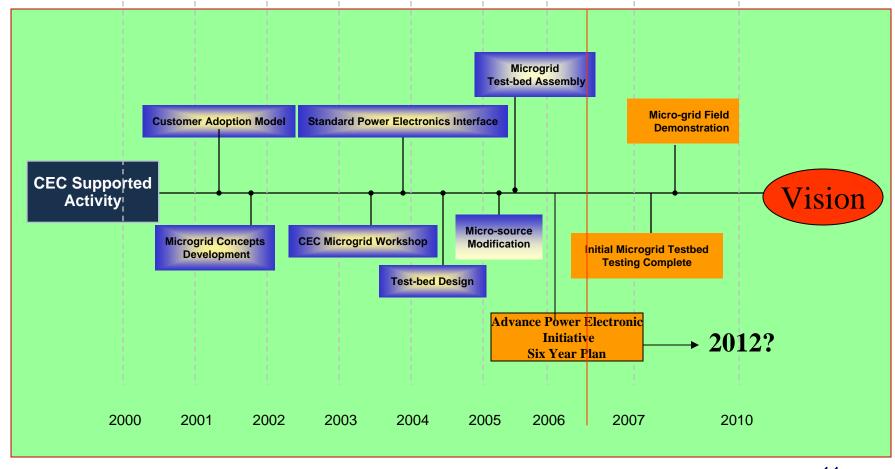
Improve warranties from now 1-5 year to 10-20 years

☐ FUNCTIONALITY

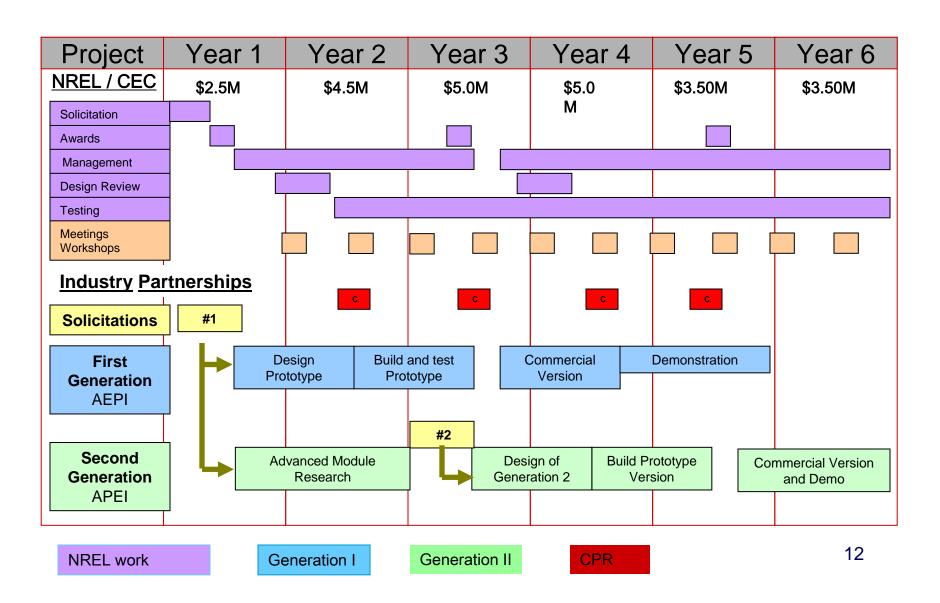
- Improve Power quality,
- Improve Voltage/VAR support,
- Improve seamless connection of backup power, etc.

Strategy will be to reduce size and cost while improving efficiency by:

- ☐ Standardizing the interface between PE systems and the grid for high production volume.
- ☐ Reducing packaging size, lowering cost and Increasing efficiency.
- □ Improving interconnection and interoperability of PE components and systems. Achieve "Plug and Play" technology
- Creating scalability and modularity of PE systems and components


What we are looking for?

Scalability (1kW-20kW, 20kW-100kW, 100KW-1MW)
Durability (10 – 20 year MTFF)
Possibility of Multiple DER operation in a grid-connected or stand-alone mode for micro-grid applications
Grid support for power quality, load management (voltage support, VAR support, harmonic correction)
Lowering cost (\$0.25/W)
Compatibility of communication interfaces with utility and loads
To Meet National, Regional and local standards & Codes, e.g., IEEE and UL standards, NEC,FERC, ISO/RTO, etc.



CEC, 27/02/2006

APEI Initiative Timeline

APEI Initiative Cost Table Six Year Program

Steps	First Generation Solicitation	Second Generation Solicitation	NREL Support	TOTAL 6 Years Funding
Cost	\$6.0M	\$7.0M	\$11.0M	\$24.0M

CEC Projects Status

<u>Projects</u>	<u>Status</u>		
CERTS Micro-grid Lab Test	In process		
Innovating Rate Making for DER	Completed		
Flexible DER Utility Interface	Final Stage		
Modeling/Testing effect of Unbalanced Loading and voltage regulation	In Process		
Modeling, Research, Planning for APEI Initiative	Start May 2006		

Partnerships

- ☐ CEC has an on-going Technology Partnership
 Agreement with NREL-DOE on Interconnection, Grid
 Effects and Tariff Design for Distributed Energy
 Resources
- □ CEC has a on-going Technology Partnership with LBNL-CERTS on micro-grid development
- □ CEC also coordinates with DOE on *Distributed Energy* and *Electric Distribution Transformation Programs*